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The total synthesis of natural (+)-spiculoic acid A, a new cytotoxic marine natural product of polyketide
origin, has been accomplished for the first time. The key step of the total synthesis was a stereoselective
and high-yielding intramolecular Diels–Alder reaction of a highly functionalized (E,E,E)-2,7,9-dodecanal
derivative for the construction of the core tetrahydroindan-2-one skeleton.

� 2009 Elsevier Ltd. All rights reserved.
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Figure 1. (+)-Spiculoic acid A (1) and related natural products (2–5).
(+)-Spiculoic acid A (1) (Fig. 1) is a secondary metabolite of
polyketide origin, which was isolated in 2004 from the metha-
nol-extracts of the Caribbean marine sponge Plakortis angulospicul-
atus (Carter) by Andersen et al.1 This natural product 1 showed
in vitro cytotoxicity against the human breast cancer MCF-7 cells.
The relative stereochemistry of 1 was determined by the Andersen
group on the basis of thorough NMR analysis. At the same time, the
Andersen group isolated and characterized a closely related spicu-
lane-type compound, (�)-spiculoic acid B (2), which showed no
in vitro cytotoxicity against the human breast cancer MCF-7 cells.
Later, a number of structurally related spiculane-type natural
products have been isolated from another marine sponge, Plakortis
zyggompha, and their interesting biological activities have been re-
ported.2,3 Some of them are (+)-isospiculoic acid A (3), (+)-nor-spic-
uloic acid A (4), and (+)-dinor-spiculoic acid A (5).2 These
spiculane-type natural products also showed cytotoxicity against
several tumor cell lines. Andersen et al. have proposed that 1 might
be produced biosynthetically through an enzyme-catalyzed intra-
molecular Diels–Alder (IMDA) reaction of a linear triene equipped
with all the functionalities in 1, including a conjugated diene (4p)
and a terminal unsaturated ester (2p).

The synthetic studies on these natural products have been
extensively explored by several groups.4–6 In 2006, Baldwin, Lee
et al. reported the total synthesis of unnatural (�)-spiculoic acid
A, thereby establishing the absolute stereochemistry of 1 as depic-
ted.5a,7 Inspired by Andersen’s proposal, their total synthesis of
(�)-spiculoic acid A has been achieved by using the IMDA reaction
ll rights reserved.

o).
of a linear conjugate diene with a terminal unsaturated ester func-
tionality for the stereoselective construction of the bicyclic core
structure.8 Herein, we describe the total synthesis of natural (+)-
spiculoic acid A (1) for the first time.

Our total synthesis of 1 relied on the IMDA reaction of a linear
(E)-unsaturated aldehyde 6 installing an (E,E)-conjugate diene unit,
which possessed all requisite functionalities except the styryl side
chain attached to the cyclohexene ring (Scheme 1).9,10 As described
later, the IMDA reaction of substrate 23 (6:R1 = TBS; R2 = MOM)
underwent with complete endo- and p-facial selectivities, provid-
ing a bicyclic precursor 24 for the total synthesis of 1 quite effi-
ciently. The substrate 23 would be in turn synthesized
stereoselectively from known enantiomerically homogeneous
branched five-carbon diol 7.11

The synthesis and IMDA reaction of substrate 23 are summa-
rized in Scheme 2. Swern oxidation of the monoprotected diol 7
provided aldehyde 8. The Wittig olefination of 8 with Ph3P@C(Et)-
CO2Et in refluxing toluene provided the (E)-unsaturated ester 9
stereoselectively (E/Z > 20:1 on the basis of 1H NMR analysis).
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Scheme 1. Our IMDA approach for the total synthesis of 1. TBS = tert-butyldimethylsilyl.
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Scheme 2. Synthesis of substrate 23 and the IMDA reaction. Reagents and
conditions: (a) DMSO, (COCl)2, CH2Cl2, �78 �C then Et3 N, rt; (b) Ph3P@C(Et)CO2Et,
toluene, reflux, 85% over two steps; (c) DIBAL-H, CH2Cl2, �78 �C, 95%; (d) MPMCl,
NaH, Bu4NI, DMF, rt, 94%; (e) AcOH/THF/H2O = 3:2:1, rt, 87%; (f) DMSO, (COCl)2,
CH2Cl2, �78 �C then Et3 N, rt, 95%; (g) tert-BuOK, nBuLi, THF, trans-2-butene,
�100 �C to �50 �C then (�)-B-methoxy-diisopinocampheylborane, BF3�Et2O, 13,
�78 �C then 3 M aq NaOH, 35% H2O2, reflux; (h) MOMCl, iPr2NEt, CH2Cl2, reflux 65%
over two steps: (i) OsO4 in tert-BuOH, NMO, acetone/H2O = 6:1, rt, 92%; (j) NaIO4,
acetone/H2O = 4:1, rt; (k) 1,1-(dibromopropyl)triphenylphosphonium bromide,
nBuLi, Et2O, �78 �C, 77% over two steps; (l) bis(pinacolato)diboron, PdCl2(PPh3)2,
PPh3, PhOK, toluene, 50 �C, 78%; (m) DDQ, CH2Cl2, aq phosphate buffer, rt, 79%; (n)
PdCl2(dppf) (cat.), 3 M aq NaOH, degassed THF, reflux, 71%; (o) MnO2, CH2Cl2, rt,
97%; (p) degassed toluene, BHT (cat.), 70 �C, 5 d, 97%.
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Hydride reduction of 9 followed by protection of the resulting
allylic alcohol 10 as the (4-methoxyphenyl)methyl (MPM) ether
provided 11. Deprotection of the TBS group in 11 under acidic con-
ditions provided 12. Swern oxidation of 12 provided aldehyde 13
efficiently. The stereoselective introduction of an anti-b-methylho-
moallylic alcohol unit was next explored. We eventually found that
the Brown crotylboration protocol applied to 13 provided the most
satisfactory result for our expectations. Thus, exposure of (E)-crot-
yldiisopinocampheylborane,12 prepared by mixing the potassium
salt of trans-2-butene and (-)-B-methoxydiisopinocampheylbora-
ne, to 13 in the presence of BF3�Et2O, followed by treatment with
alkaline H2O2, provided the desired anti-b-methylhomoallylic alco-
hol 14 with high stereoselectivity.13,14 Protection of the homo-
allylic alcohol 14 as the methoxymethyl (MOM) ether provided
15, which was converted into aldehyde 17 by a two-step carbon-
carbon bond cleavage via diol 16. The Wittig olefination of 17 with
1,1-(dibromopropyl)triphenylphosphonium bromide15 in the pres-
ence of base (nBuLi) at �78 �C provided stereoselectively the (E)-
trisubstituted bromoolefin 18 (E/Z > 20:1 on the basis of 1H NMR
analysis). Treatment of 18 with bis(pinacolato)diboron16 in the
presence of PdCl2(PPh3)2, PPh3, and PhOK in toluene at 50 �C pro-
vided vinylboronate 19 in a good yield of 78%. The DDQ-mediated
deprotection of the MPM group in 19 provided allylic alcohol 20.
The Suzuki–Miyaura cross-coupling of 20 and (E)-vinyl iodide
2117 under the standard Pd-catalyzed conditions provided the de-
sired coupling product 22 uneventfully. Oxidation of the allylic
alcohol 22 with MnO2 provided a,b-unsaturated aldehyde 23, the
substrate for the IMDA reaction.18 To our satisfaction, prolonged
(5 days) heating of 23 at 70 �C in toluene provided the desired
endo-adduct 24 as a sole product in an excellent yield of 97%.19

As depicted in Scheme 3, the observed exclusive endo- and p-fa-
cial selectivity in the IMDA reaction of 23 was reasonably explain-
able using two transition states, 23-endo leading to 24 and 23-exo
leading to undesired cis-fused exo-adduct 25.20 Regarding the de-
picted two transition states, 23-exo suffers significantly as a result
of a severe allylic interaction (A(1.3) strain) between the ethyl sub-
stituent at C-4 and the methyl group at C-6. In the case of 23-endo,
this interaction can be avoided; thus, the IMDA reaction proceeded
via the 23-endo transition state, leading to 24 exclusively.21

The transformation of the cycloadduct 24 into 1 is summarized
in Scheme 4. NaBH4 reduction of 2422 and protection of the result-
ing primary alcohol 26 with MOMCl provided 27. Deprotection of
the TBS group in 27 and successive Swern oxidation of the result-
ing primary alcohol 28 provided the aldehyde 29. Introduction of
the styryl group into 29 was accomplished by a Horner–Wads-
worth–Emmons olefination with the excess amount of the anion
generated from diethyl (benzyl)phosphonate with nBuLi at 0 �C.
As a result, the styryl derivative 30 was obtained in a good yield
of 88%. Deprotection of both MOM groups in 30 and Dess–Martin
oxidation23 of the resulting diol 31 provided the aldehyde-keto
intermediate 32. Finally, Kraus–Pinnick oxidation24 of 32 provided
(+)-spiculoic acid A (1). The spectral data (1H and 13C NMR) of the
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Scheme 4. Conversion of the IMDA adduct 24 into 1. Reagents and conditions: (a)
NaBH4, MeOH/THF = 1:1, rt, 91%; (b) MOMCl, iPr2NEt, CH2Cl2, reflux; (c) nBu4NF,
THF, 50 �C, 99% over two steps; (d) DMSO, (COCl)2, CH2Cl2, �78 �C then Et3 N, rt,
90%; (e) diethyl (benzyl)phosphonate, nBuLi, THF, �78 �C then 29, 0 �C, 88%; (f) CSA,
MeOH, 40 �C, 6 d; (g) Dess–Martin periodinane, CH2Cl2, rt, 85% over two steps; (h)
NaClO2, 2-methyl-2-butene, phosphate buffer, tert-BuOH/H2O = 5:1, rt, 82%.

3358 D. Matsumura et al. / Tetrahedron Letters 50 (2009) 3356–3358
synthetic 1 were identical with those reported for the natural
product 1.1 Furthermore, [a]D of the synthetic 1 [½a�25

D +102 (c
0.38, CH2Cl2)] coincided with that reported for the natural sample
[[a]D +110 (c 0.1, CH2Cl2)], including its sign.25

In summary, we have achieved the first total synthesis of natu-
ral (+)-spiculoic acid A (1), which featured the IMDA reaction of the
trienic aldehyde 23 for the highly stereoselective and expeditious
construction of a core bicyclic structure with correct stereochemis-
try for the total synthesis of 1. The highly stereoselective outcome
of the IMDA reaction can be explained by the presence or by the
absence of the steric hindrance in the two possible transition
states. Relying on the mentioned transition state argument, we
have also accomplished the synthesis of a cis-fused spiculoic acid
A congener.
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